奥卡姆剃刀 (Occam’s Razor):如无必要,勿增实体。——奥卡姆的威廉 (William of Ockham)
奥卡姆剃刀指出,在几种可能的解决方案之中,最有可能的解决方案便是概念和假设最少的那个。因为这个解决方案最为简单,只解决了问题,并且没有引入额外的复杂度和可能的负面后果。
参见:
- 你不需要它原则 (YAGNI)
- 没有银弹:软件工程的本质性与附属性工作
- No Silver Bullet: Accidental Complexity and Essential Complexity
例子:
也就是说,在多个能够解决同一个问题的方法中,最简单有效的那种方法是最好的。
奥卡姆剃刀(英语:Ockham’s Razor、拉丁语:Lex Parsimoniae,意为“简约法则”)是由14世纪方济会修士奥卡姆的威廉(William of Occam,约1287年至1347年,英格兰萨里郡奥卡姆 (Ockham)人氏)提出的逻辑学法则,他在《箴言书注》2卷15题说“切勿浪费多余功夫去做本可以较少功夫完成之事”。换言之,如果关于同一个问题有许多种理论,每一种都能作出同样准确的预言,那么应该挑选其中使用假定最少的。尽管越复杂的方法通常能做出越好的预言,但是在不考虑预言能力(即结果大致相同)的情况下,假设越少越好。
所罗门诺夫的归纳推理理论是奥卡姆剃刀的数学公式化:在所有能够完美描述已有观测的可计算理论中,较短的可计算理论在估计下一次观测结果的概率时具有较大权重。
在自然科学中,奥卡姆剃刀被作为启发法技巧来使用,更多地作为帮助科学家发展理论模型的工具,而不是在已经发表的理论之间充当裁判角色。在科学方法中,奥卡姆剃刀并没有被当做逻辑上不可辩驳的定理或者科学结论。在科学方法中对简单性的偏好,是基于可证伪性的标准。对于某个现象的所有可接受的解释,都存在无数个可能的、更为复杂的变体:因为你可以把任何解释中的错误归结于特例假设,从而避免该错误的发生。所以,较简单的理论比复杂的理论更好,因为它们更加可检验。
